Journal Articles


*Denotes equal contribution  †Denotes corresponding author  **2021 JCR Impact Factor



34. A microfluidic model of AQP4 polarization and fluid transport in the healthy and inflamed brain: the first step towards glymphatics-on-a-chip, Soden PA, Henderson AR, Lee E (2022), Advanced Biology. doi: adbi.202200027. PDF

33. Engineering approaches to investigate the roles of lymphatic vessels in rhueumatoid arthritis, Kraus SE, Lee E (2022), Microcirculation. e12769. PDF

32. Tissue engineering in age-related macular degeneration: a mini-review, Wu A*, Lu R*, Lee E (2022), Journal of Biological Engineering**.16;11. PDF (**IF 6.248, Emerging leaders in biological engineering

31. Lymphatic tissue and organ engineering for in vitro modeling and in vivo regeneration, Kolarzyk AM*, Wong G*, Lee E (2022), Cold Spring Harbor Perspectives in Medicine**. doi: 10.1101/cshperspect.a041169. PDF (**IF 6.915) 

: “Angiogenesis” (2nd edition), editors: Patricia D’Amore & Diane Bielenberg


30. A lymphatic co-culture model for personalized cancer medicine, Kolarzyk AM, Lee E (2021), EBioMedicine**. 73;103685. PDF (**IF 11.205)

29. A bioengineered lymphatic vessel model for studying lymphatic endothelial cell-cell junction and barrier function, Henderson AR, Ilan IS, Lee E (2021), Microcirculation**. e12730, PDF (**Cover Article; This study awarded Microcirculatory Society Award for Excellence in Lymphatic Research 2021)

28. Comprehensive characterization of distinct genetic alterations in metastatic breast cancer across various metastatic sites, Cha S, Lee E, Won HH† (2021), NPJ Breast Cancer**. 7(1):93, Doi: 10.1038/s41523-021-00303-y. PDF (**IF 6.73)

27. Bioengineered in vitro models of leukocyte-vascular interactions, Lee J, Breuer CB, Lee E (2021), Biochemical Society Transactions**. BST20200620. PDF (**IF 5.407)

26. Engineering three-dimensional vascularized cardiac tissues, Williams MAC, Mair DB, Lee W, Lee E, Kim DH† (2021), Tissue Engineering Part B: Reviews**. 10: 20142. PDF (**IF 7.376)


25. In vitro modeling of tumor spheroid interactions to perfused blood vessels, Kwak T, Lee E (2020), Scientific Reports**. 10: 20142. PDF (**IF 4.996)

24. Tissue-engineered models for glaucoma research, Lu R, Soden PA, Lee E (2020), Micromachines (Basel)**. 11(6), 612. PDF  **Feature Paper & Editor’s Choice

23. Rapid multilayer microfabrication for modeling organotropic metastasis in breast cancer, Kwak T, Lee E (2020), Biofabrication**. 13: 015002. PDF (**IF 11.061)

22. Blood and lymphatic vasculatures-on-chip platforms and their applications for organ-specific in vitro modeling, Henderson AR*, Choi H*, Lee E (2020), Micromachines (Basel). 11(2), 147. PDF



21. Biomimetic microsystems for blood and lymphatic vascular research, Nguyen DHT, Lee E (2019), Biomimetic Microengineering (CRC Press). page 36-60. PDF

20. A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling, Nguyen DHT*, Lee E*, Alimperti SA, Norgard RJ, Wong A, Lee JJK, Eyckmans J, Stanger BZ, Chen CS† (2019), Science Advances**. 5, eaav6789. PDF  (**IF 14.140)


Prior to Cornell

19. Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ† (2018), Journal of Biomedical Materials Research A**. 106(6):1753-1764. PDF (**IF 4.854)

18. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, Ingber DE† (2018), Cell Reports**. 21(2):508-516. PDF  (**IF 9.995)


17. Laminar flow downregulates Notch activity to promote lymphatic sprouting. Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, Hong M, Lee S, Ishida H, Burford J, Peti-Peterdi J, Adams RH, Srikanth S, Gwack Y, Chen CS, Vogel HJ, Koh CJ, Wong AK, Hong YK† (2017), Journal of Clinical Investigation**. 127(4):1225-1240. PDF  (**IF 19.460)

16. Biomimetic on-a-chip platforms for studying cancer metastasis, Lee E, Song HG, Chen CS† (2016), Current Opinion in Chemical Engineering**. 11:20-27. PDF (**IF 6.117)

15. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts. Dore-Savard L, Lee E, Kakkad S, Popel AS, Bhujwalla ZM† (2016), Scientific Reports**. 6:39460. PDF (**IF 4.996)

14. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumor and organ microenvironment. Lee E, Pandey NB, Popel AS† (2015), Expert Reviews in Molecular Medicine**. 17:e3. PDF (**IF 6.923)

13. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Fertig EJ*, Lee E*, Pandey NB, Popel AS† (2015), Scientific Reports**. 5:12133. PDF (**IF 4.996) 

12. Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model. Kim E, Lee E, Plummer C, Gil S, Popel AS, Pathak AP† (2015), Angiogenesis**. 18(2):125-36. PDF  (**IF 10.658)

11. Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS† (2014), Nature Communications**. 5:4715. PDF  (**IF 17.690)


10. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Lee E, Lee SJ, Koskimaki JE, Han Z, Pandey NB, Popel AS† (2014), Scientific Reports**. 4:7139. PDF (**IF 4.996)

9. Lymphatic endothelial cells support tumor growth in breast cancer. Lee E, Pandey NB, Popel AS† (2014), Scientific Reports**. 4:5853. PDF (**IF 4.996)

8. Pre-treatment of mice with tumor-conditioned media accelerates metastasis to lymph nodes and lungs: a new spontaneous breast cancer metastasis model. Lee E, Pandey NB, Popel AS† (2014), Clinical & Experimental Metastasis**. 31(1):67-79. PDF (**IF 4.510)

7. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells. Chu LH, Lee E, Bader JS, Popel AS† (2014), PLoS One. 9(10):e110871. PDF

6. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer. Rosca EV, Penet MF, Mori N, Koskimaki JE, Lee E, Pandey NB, Bhujwalla ZM, Popel AS† (2014), PLoS One. 9(11):e111901. PDF

5. Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Lee E, Koskimaki JE, Pandey NB, Popel AS† (2013), Neoplasia**. 15(2):112-24.PDF (**IF 6.218)


4. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Koskimaki JE*, Lee E*, Chen W, Rivera CG, Rosca EV, Pandey NB, Popel AS† (2013), Angiogenesis**. 16 (1), 159-170. PDF  (**IF 10.658)

3. Serpin-derived peptides are antiangiogenic and suppress breast tumor xenograft growth. Koskimaki JE, Rosca EV, Rivera CG, Lee E, Chen W, Pandey NB, Popel AS† (2012), Translational Oncology**. 5(2):92-7. PDF (**IF 4.243)

2. Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion, and tube formation. Lee E*, Rosca EV*, Pandey NB, Popel AS† (2011), International Journal of Biochemistry & Cell Biology**. 43(12):1812-21. PDF (**IF 5.044)

1. Polyproline-type helical-structured low-molecular-weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Lee E*, Kim YS*, Bae SM, Kim SK, Jin S, Chung SW, Lee M, Moon HT, Jeon OC, Park RW, Kim IS, Byun Y†, Kim SY† (2009), International Journal of Cancer**. 124(12):2755-65. PDF (**IF 7.316)


2. Biomimetic peptide and biodegradable delivery platform for the treatment of angiogenesis and lymphangiogenesis-dependent diseases. AS Popel, NB Pandey, E Lee, JJ Green, RB Shmueli (2017), US Patent 9,802,984.

1. Heparin conjugates and methods. Y Byun, ES Lee, O Jeon, SY Kim, RW Park (2012), US Patent 8,088,753.


Skip to toolbar