Journal Articles



24. Blood and lymphatic vasculatures-on-chip platforms and their applications for organ-specific in vitro modeling, Henderson AR*, Choi H*, Lee E (2020), Micromachines (Basel), 11(2), 147 (*Equal contribution). PDF

23. Biomimetic microsystems for blood and lymphatic vascular research (Chapter 2), Nguyen DHT, Lee E (2019), Biomimetic Microengineering (1st ed., CRC Press), page 36-60. PDF


22. A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling, Nguyen DHT*, Lee E*, Alimperti SA, Norgard RJ, Wong A, Lee JJK, Eyckmans J, Stanger BZ, Chen CS (2019), Science Advances. 5, eaav6789. (*Equal contribution). PDF

21. Large-scale association analysis identifies recurrently altered genes specific to metastatic breast cancer, Cha S, Lee E, Won HH, Submitted.

20. A biomimetic lymphatics-on-chip recapitulates lymphatic drainage and lymphedemaLee E, Polacheck WJ, Kwak S, Wen A, Nguyen DHT, Kutys ML, Alimperti SA, Eyckmans J, Bielenberg DR, Chen H, Chen CS, Submitted.




Prior to Cornell

19. Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ (2018), Journal of Biomedical Materials Research A. 106(6):1753-1764. PDF

18. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, Ingber DE (2018), Cell Reports. 21(2):508-516. PDF 


17. Laminar flow downregulates Notch activity to promote lymphatic sprouting. Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, Hong M, Lee S, Ishida H, Burford J, Peti-Peterdi J, Adams RH, Srikanth S, Gwack Y, Chen CS, Vogel HJ, Koh CJ, Wong AK, Hong YK (2017), Journal of Clinical Investigation. 127(4):1225-1240. PDF

16. Biomimetic on-a-chip platforms for studying cancer metastasis, Lee E, Song HG, Chen CS (2016), Current Opinion in Chemical Engineering. 11:20-27. PDF

15. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts. Dore-Savard L, Lee E, Kakkad S, Popel AS, Bhujwalla ZM (2016), Scientific Reports. 6:39460. PDF

14. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumor and organ microenvironment. Lee E, Pandey NB, Popel AS (2015), Expert Reviews in Molecular Medicine. 17:e3. PDF

13. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Fertig EJ*, Lee E*, Pandey NB, Popel AS (2015), Scientific Reports. 5:12133. PDF (*Equal contribution)  

12. Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model. Kim E, Lee E, Plummer C, Gil S, Popel AS, Pathak AP (2015), Angiogenesis. 18(2):125-36. PDF

11. Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS (2014), Nature Communications. 5:4715. PDF 


10. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Lee E, Lee SJ, Koskimaki JE, Han Z, Pandey NB, Popel AS (2014), Scientific Reports. 4:7139. PDF


9. Lymphatic endothelial cells support tumor growth in breast cancer. Lee E, Pandey NB, Popel AS (2014), Scientific Reports. 4:5853. PDF

8. Pre-treatment of mice with tumor-conditioned media accelerates metastasis to lymph nodes and lungs: a new spontaneous breast cancer metastasis model. Lee E, Pandey NB, Popel AS (2014), Clinical & Experimental Metastasis. 31(1):67-79. PDF


7. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells. Chu LH, Lee E, Bader JS, Popel AS (2014), PLoS One. 9(10):e110871. PDF

6. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer. Rosca EV, Penet MF, Mori N, Koskimaki JE, Lee E, Pandey NB, Bhujwalla ZM, Popel AS (2014), PLoS One. 9(11):e111901. PDF

5. Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Lee E, Koskimaki JE, Pandey NB, Popel AS (2013), Neoplasia. 15(2):112-24. PDF 


4. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Koskimaki JE*, Lee E*, Chen W, Rivera CG, Rosca EV, Pandey NB, Popel AS (2013), Angiogenesis. 16 (1), 159-170. PDF (*Equal contribution)

3. Serpin-derived peptides are antiangiogenic and suppress breast tumor xenograft growth. Koskimaki JE, Rosca EV, Rivera CG, Lee E, Chen W, Pandey NB, Popel AS (2012), Translational Oncology. 5(2):92-7. PDF

2. Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion, and tube formation. Lee E*, Rosca EV*, Pandey NB, Popel AS (2011), International Journal of Biochemistry & Cell Biology. 43(12):1812-21. PDF (*Equal contribution)

1. Polyproline-type helical-structured low-molecular-weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Lee E*, Kim YS*, Bae SM, Kim SK, Jin S, Chung SW, Lee M, Moon HT, Jeon OC, Park RW, Kim IS, Byun Y, Kim SY (2009), International Journal of Cancer. 124(12):2755-65. PDF (*Equal contribution)





2. Biomimetic peptide and biodegradable delivery platform for the treatment of angiogenesis and lymphangiogenesis-dependent diseases. AS Popel, NB Pandey, E Lee, JJ Green, RB Shmueli (2017), US Patent 9,802,984.

1. Heparin conjugates and methods. Y Byun, ES Lee, O Jeon, SY Kim, RW Park (2012), US Patent 8,088,753.


Skip to toolbar